
Identity and Access
Management

Concepts
Svet Voloshin

What is Identity Management?
In the context of Salesforce, identity management refers to the processes and technologies used to manage user identities and
permissions, enabling the right individuals to access the right resources within the Salesforce environment at the right times, thereby
streamlining user authentication, authorization, and ensuring security compliance.

Identity Management, as it relates to Salesforce and other connected systems, encompasses several key aspects:

● Single Sign-On (SSO): Enables users to log in once and gain access to various connected systems, including Salesforce, without
needing to re-authenticate.

● User Provisioning and De-provisioning: Streamlines the process of creating, updating, and removing user accounts across
Salesforce and integrated systems, ensuring consistency and efficiency.

● Access Control and Authorization: Manages what users can see and do within Salesforce and related applications, using role-based
permissions and security policies.

● Multi-Factor Authentication (MFA): Enhances security by requiring users to provide multiple forms of identification before accessing
Salesforce and connected systems.

● Compliance and Reporting: Provides tools for monitoring and reporting on user activities and security configurations, supporting
compliance with various regulations.

● Integration with Third-Party Identity Providers: Allows Salesforce to trust and accept authentication from external identity
providers (IdPs), facilitating collaboration and integration with other platforms.

These aspects work together to enable secure, seamless access to Salesforce and its connected applications, improving user experience while
maintaining strong security and compliance standards.

What is an IdP?
An Identity Provider (IdP) is a system that manages user identities and authenticates users for other service providers (called
Relying Parties or Service Providers). The IdP is responsible for verifying the user's identity and providing the authentication
credentials to other services that trust the IdP.

Here's how it typically works:

1. Authentication Request: When a user attempts to access a service, that service redirects the user to the IdP for
authentication.

2. User Authentication: The IdP authenticates the user, typically by asking for a username and password or using other
authentication mechanisms like multi-factor authentication.

3. Sending Assertion: Once authenticated, the IdP sends an assertion (such as a SAML assertion or OAuth token) back to
the service, confirming the user's identity.

4. Access Granted: The service, trusting the IdP's assertion, grants access to the user.

This process allows users to use the same identity (username, password, etc.) across various services that trust the same IdP,
providing a more seamless user experience and helping to centralize identity management. It's commonly used in Single
Sign-On (SSO) solutions and plays a crucial role in modern enterprise and cloud environments.

User Store
● Function: A repository that contains user credentials, attributes, and profile

information.
● Components: Typically consists of a database or directory service like LDAP.
● Authentication: Stores the information necessary for authentication (such as

passwords) but doesn’t perform authentication itself.
● Integration: Often used as a component within an IdP or other authentication

systems, rather than directly integrating with various applications.
● Examples: Active Directory, LDAP directories, custom databases with user information.

In essence, the User Store is a specific component responsible for housing user data, while
the IdP is a more comprehensive system that leverages one or more user stores to
authenticate and authorize users across various connected applications and services.

Authentication vs. Authorization
Authentication and authorization are two critical concepts in security, especially in computer systems. They may seem similar, but they serve
different purposes in the context of access control.

Authentication

Authentication is the process of verifying the identity of a user, device, or system. It's about ensuring that the entity is who it claims to be.
Common methods of authentication include:

● Something you know: A password or PIN
● Something you have: A smart card, mobile device, or token
● Something you are: A fingerprint, facial recognition, or other biometric data

In short, authentication answers the question: "Are you who you say you are?"

Authorization

Authorization comes after authentication and determines what an authenticated user or system is allowed to do. It involves assigning
permissions and rights to perform certain actions on a system or network, such as reading, writing, executing, or deleting files.

Authorization answers the question: "What are you allowed to do?"

Relationship Between Authentication and Authorization
In a typical access control scenario, authentication happens first. Once the system has
verified the user's identity, it then consults an authorization system to determine what
that user is permitted to do.

Here's a simple analogy:

● Authentication is like showing your ID card at the entrance to a building, verifying that
you are who you claim to be.

● Authorization is like having the correct key or access badge that allows you to enter
specific rooms within that building. Your ability to enter those rooms is based on your
permissions and what you're authorized to do within the building.

In summary, authentication is about validating identity, while authorization is about
determining permissions and access levels. Both are vital to ensuring the security and
integrity of computer systems.

What is Active Directory?
● Active Directory (AD) is a directory service developed by Microsoft that provides a central repository for managing

users, computers, and other objects in a network.
● AD is used to store information about users, such as their passwords, usernames, and group memberships.
● AD is also used to store information about computers, such as their names, IP addresses, and operating systems.
● AD can be used to control access to resources, such as files, printers, and applications.
● AD is a scalable directory service that can be used to manage large networks.

Here are some of the key features of Active Directory:

● Centralized management: AD provides a central repository for managing users, computers, and other objects in a
network.

● Secure authentication: AD uses the Lightweight Directory Access Protocol (LDAP) to authenticate users and
computers.

● Group policy: AD allows administrators to create and manage group policies, which can be used to control the
behavior of users and computers.

● Replication: AD replicates information between domain controllers, which ensures that the directory is always
up-to-date.

What is an ERP?
● Enterprise resource planning (ERP) is a suite of integrated applications that helps organizations manage their core

business processes, such as accounting, manufacturing, sales, and human resources.
● ERP systems are designed to provide a single source of truth for all of an organization's data, which can help to

improve efficiency, accuracy, and visibility.
● ERP systems can be implemented on-premises or in the cloud.
● Some of the most popular ERP vendors include SAP, Oracle, and Microsoft Dynamics.

AD FS
Active Directory Federation Services (AD FS) is a Microsoft technology that provides single sign-on (SSO) access to
applications and systems located across organizational boundaries. AD FS uses claims-based authentication to allow users
to authenticate to a federation server and then access applications and systems that trust that federation server.

AD FS is a tool for organizations that need to provide SSO access to applications and systems that are located in different
domains, forests, or even organizations. It can also be used to provide SSO access to cloud-based applications.

Here are some of the key features of AD FS:

● Single sign-on: AD FS allows users to authenticate to a federation server once and then access multiple applications
and systems without having to re-authenticate.

● Claims-based authentication: AD FS uses claims-based authentication, which means that users are authenticated
based on their claims, such as their username, password, and group memberships.

● Federation: AD FS allows organizations to federate their identities, which means that they can trust each other's
federation servers.

● Cloud integration: AD FS can be integrated with cloud-based applications, such as Office 365.

What is LDAP?
Lightweight Directory Access Protocol (LDAP) is a directory services protocol that is used to access and manage information about users, groups, and other
objects in a network. LDAP is an open, vendor-neutral protocol, which means that it can be used with a variety of different directory servers.

LDAP is used for a variety of purposes, including:

● Authentication: LDAP can be used to authenticate users to a network or application.
● Authorization: LDAP can be used to control access to resources, such as files, printers, and applications.
● Directory lookup: LDAP can be used to look up information about users, groups, and other objects in a directory.
● Schema definition: LDAP can be used to define the schema for a directory, which is the set of rules that define the types of objects that can be stored in

the directory and the attributes that can be associated with those objects.

LDAP is a widely used protocol, and it is supported by a variety of directory servers, including Active Directory, OpenLDAP, and FreeIPA.

Here are some of the key features of LDAP:

● Open: LDAP is an open protocol, which means that it is free to use and implement.
● Vendor-neutral: LDAP is a vendor-neutral protocol, which means that it can be used with a variety of different directory servers.
● Secure: LDAP uses the Secure Sockets Layer (SSL) or Transport Layer Security (TLS) protocols to encrypt communications between clients and

servers.
● Scalable: LDAP is a scalable protocol, which means that it can be used to manage large directories.

LDAP Authentication
1. The client sends a bind request to the LDAP server. The bind request includes the client's username and password.
2. The LDAP server authenticates the client by checking the client's credentials against the Active Directory database.

The Active Directory database stores the user's username, password, and other information, such as the user's
group memberships.

3. If the credentials are valid, the LDAP server sends a bind response to the client. The bind response includes a token
that the client can use to access resources in Active Directory.

4. The client uses the token to access resources in Active Directory. For example, the client can use the token to log in
to a computer or to access a file share.

AD authentication using LDAP is a secure and efficient way to authenticate users and computers. It is a widely used
protocol, and it is supported by a variety of directory servers, including Active Directory, OpenLDAP, and FreeIPA.

What is SSO?
Single sign-on (SSO) is an authentication method that enables users to securely authenticate with multiple applications and
websites by using just one set of credentials. SSO eliminates the need for users to remember multiple passwords and
reduces the risk of password reuse.

SSO works by having a central authentication server that stores user credentials. When a user logs in to an application that
supports SSO, the application redirects the user to the central authentication server. The central authentication server
authenticates the user and then returns a token to the application. The application uses the token to grant the user access
to the application.

There are two main types of SSO:

● Local SSO: Local SSO is implemented within a single organization. The central authentication server is typically an
Active Directory server.

● Federated SSO: Federated SSO allows users to authenticate to applications and websites that are hosted by
different organizations. The central authentication server is typically a federation server.

SSO Providers
● OneLogin is a cloud-based SSO provider that offers a variety of features, including local SSO, federated SSO, and

multi-factor authentication.
● Okta is another cloud-based SSO provider that offers a similar set of features to OneLogin.
● Ping Identity is a hybrid SSO provider that offers a combination of on-premises and cloud-based SSO solutions.
● Shibboleth is an open-source SSO solution that is often used by educational institutions and government

organizations.
● Azure Active Directory is a cloud-based SSO provider that is part of Microsoft's Azure suite of cloud services.
● Google Workspace is a cloud-based productivity suite that includes SSO capabilities.
● Amazon Cognito is a cloud-based SSO provider that is part of Amazon Web Services (AWS).
● IBM Security Verify is an SSO provider that is part of IBM's Security suite of products.
● Duo Security is an SSO provider that specializes in multi-factor authentication.

SSO options for Salesforce
SSO Option Features Supported by Salesforce

SAML
Supports single sign-on with other applications that
support SAML. Yes

OpenID Connect
Supports single sign-on with other applications that
support OpenID Connect. Yes

Active Directory
Allows users to log in to Salesforce using their AD
credentials. Yes

Google Workspace
Allows users to log in to Salesforce using their
Google Workspace credentials. Yes

Okta
Offers a variety of features, including SAML,
OpenID Connect, and Active Directory integration. Yes

OneLogin Offers a similar set of features to Okta. Yes

What is SAML?
SAML, which stands for Security Assertion Markup Language, is an open standard for exchanging authentication and authorization data
between parties, particularly between an identity provider and a service provider.

Key points about SAML include:

● Single Sign-On (SSO): SAML is often used to implement Single Sign-On (SSO), where a user logs in once and gains access to multiple
systems without being prompted to log in again at each of them.

● Components: SAML involves three main components - the user, the identity provider (IdP), and the service provider (SP). The user
requests access to a resource from the SP, the SP requests and obtains an identity assertion from the IdP, and based on this assertion,
the SP can make an authorization decision.

● SAML Assertions: SAML communicates user identities through documents called assertions. Assertions are XML documents that
contain information about a user, the act of authenticating the user, and any additional attributes related to the user.

● SAML Protocol: The SAML protocol defines how certain SAML elements (including assertions) are packaged within SAML messages,
and provides a framework for requesting and receiving these messages.

● Use Case: An example of a SAML use case is a user logging into a web application (service provider) using their credentials stored in an
external directory (identity provider). The service provider requests and receives a SAML assertion from the identity provider, and if the
user is authenticated, the service provider grants access.

SAML thus helps in achieving centralized authentication and authorization, which makes managing user access across multiple systems more
convenient and secure.

What is OAuth 2.0?
OAuth 2.0, which stands for Open Authorization version 2.0, is an open standard for access delegation. It's commonly used as
a way for Internet users to grant websites or applications access to their information on other websites, but without giving
them the passwords.

Here are some key points about OAuth 2.0:

● Access Tokens: OAuth works by providing an access token to the third-party application, allowing the application to act
on behalf of the user. These tokens are issued by an authorization server at the user's request, and with the user's
approval.

● Scope of Access: Access tokens define the scope and duration of access. For instance, a user might allow a printing
service to access their Google Photos for one hour to print a photo.

● Flows: OAuth 2.0 defines several "flows" (also known as "grant types") for different types of applications and scenarios.
These include the Authorization Code Grant (for apps running on a web server), Implicit Grant (for browser-based or
mobile apps), Resource Owner Password Credentials Grant (a legacy flow that allows exchange of username and
password for a token), and Client Credentials Grant (for application access to their own service account).

● Security: OAuth 2.0 is safer than sharing passwords because the user can limit the scope of what the third-party app
can do (for example, read-only access), and can revoke access at any time.

● User Consent: An important part of the OAuth process is user consent, where the user approves the scope of access
that the third-party app is requesting.

What is OpenID Connect?
OpenID Connect (OIDC) is a simple identity layer on top of the OAuth 2.0 protocol, which allows computing clients to verify
the identity of an end-user based on the authentication performed by an authorization server.

Here are some key points about OpenID Connect:

● Identity Verification: It allows clients to verify the identity of the end-user and to obtain basic profile information about
the end-user in an interoperable and REST-like manner.

● OAuth 2.0: OIDC uses the OAuth 2.0 protocol for authorization and adds an additional layer to provide authentication.
● ID Token: It introduces a new token type - an ID token. This is a JSON Web Token (JWT) that contains information about

the user, including when the user logged in, how they logged in, when their session expires, and other details.
● Single Sign-On (SSO): Similar to SAML, OpenID Connect can be used to achieve Single Sign-On (SSO) where users can

authenticate once and gain access to different applications.
● End-User Info: It provides a standardized way to obtain end-user information by providing an UserInfo endpoint.
● Scope: The client can request various levels of access called "scopes", such as profile, email, address, and phone.

OAuth Versions
 OAuth 1.0: The original version of OAuth, which was a protocol that allowed users to share

private resources (like photos and videos) stored on one site with another site without having
to hand out their credentials, typically supplying username and password tokens instead.

● OAuth 1.0a: An updated version of OAuth 1.0, which addressed a security issue found in the original OAuth 1.0

protocol regarding session fixation. This update made the protocol more secure by adding an additional verification
step in the protocol workflow.

●
● OAuth 2.0: The next evolution of the OAuth protocol which was created due to the difficulty of implementing OAuth

1.0. OAuth 2.0 is not backward-compatible with OAuth 1.0 or 1.0a. This version offers more flows - called grant types
- to cover more types of client applications and scenarios, making it more flexible.

Each version has different characteristics and uses, and the version to be used depends on the
specific requirements of the situation. It's also worth mentioning that OAuth 2.0 is the version
currently recommended for most new implementations, due to its increased flexibility and simplicity
over OAuth 1.0 and 1.0a.

OAuth 1.0 vs OAuth 2.0
Feature OAuth 1.0 OAuth 2.0

Protocol SOAP RESTful

Credentials Signature Tokens

Scopes Not supported Supported

State Required Optional

Authorization Server Separate from Resource Server Can be the same as Resource Server

SOAP vs REST
SOAP and REST are two different architectural styles for designing web APIs. SOAP is a more traditional approach, while REST is a newer approach that is becoming increasingly popular.

SOAP stands for Simple Object Access Protocol. It is a protocol that uses XML to define the messages that are exchanged between clients and servers. SOAP messages are typically complex and
verbose, which can make them difficult to parse and process.

REST stands for Representational State Transfer. It is an architectural style that uses HTTP verbs to define the operations that can be performed on resources. RESTful APIs are typically simpler and
more lightweight than SOAP APIs, which makes them easier to develop and use.

Feature SOAP REST
Protocol XML HTTP

Messages
Complex and
verbose

Simple and
lightweight

Operations
Defined by SOAP
verbs

Defined by HTTP
verbs

Statelessness Stateful Stateless

Scalability Difficult to scale Easy to scale

Popularity Less popular More popular

OAuth Scopes
In OAuth 2.0, scopes are a way to limit the access that an application has to a user's account. When a user authorizes an application
to access their account, they can specify the scopes that they are willing to grant. The application can then use the scopes to
determine what resources it can access.

For example, if a user authorizes an application to access their email, the application can use the email scope to read and send
emails. However, the application cannot use the profile scope to access the user's profile information.

Scopes are defined by the resource owner, which is the user who is authorizing the application. The resource owner can specify any
scopes that they want, and the application must respect those scopes.

Here are some examples of OAuth scopes:

● email: Access to the user's email
● profile: Access to the user's profile information
● photos: Access to the user's photos
● calendar: Access to the user's calendar
● todos: Access to the user's todo list

Stateful vs Stateless
Stateful and stateless are two different architectural styles for designing web applications. Stateful applications maintain state
between requests, while stateless applications do not.

Stateful applications keep track of the current state of a user's session in memory. This allows the application to remember
what the user has done previously and to provide a more personalized experience. However, stateful applications can be more
complex to develop and maintain, and they can be less scalable.

Stateless applications do not keep track of the current state of a user's session. This means that each request is treated as a new
request, and the application does not have any knowledge of what the user has done previously. Stateless applications are
simpler to develop and maintain, and they are more scalable.

Here are some of the benefits of using stateful applications:

● Personalization: Stateful applications can provide a more personalized experience for users by remembering what they
have done previously.

● Consistency: Stateful applications can provide a more consistent experience for users by ensuring that they see the
same data on each request.

● Security: Stateful applications can be more secure by storing user data in memory, where it is less accessible to
attackers.

Here are some of the benefits of using stateless applications:

● Simplicity: Stateless applications are simpler to develop and maintain than stateful applications.
● Scalability: Stateless applications are more scalable than stateful applications because they do not need to maintain

state in memory.
● Cost-effectiveness: Stateless applications can be more cost-effective than stateful applications because they do not

need to store user data in memory.

If you are developing a web application, you need to decide whether to use a stateful or stateless architecture. The best choice for
you will depend on your specific needs and requirements.

Feature Stateful Stateless

State Maintained in memory
Not maintained in
memory

Complexity More complex Simpler

Maintenance More difficult Easier

Scalability Less scalable More scalable

Authorization Server
An authorization server is a server that issues access tokens to clients after verifying the client's identity and authorization.
Access tokens are used to access protected resources on a resource server.

An authorization server is a key component of the OAuth 2.0 authorization framework. OAuth 2.0 is a popular authorization
framework that allows users to grant third-party applications access to their protected resources without having to share
their passwords.

The authorization server is responsible for the following tasks:

● Verifying the client's identity: The authorization server must verify the client's identity before issuing an access token.
This is typically done by requiring the client to authenticate with the authorization server using a username and
password or another form of authentication.

● Authorizing the client: The authorization server must authorize the client to access the protected resources. This is
typically done by requiring the client to request access to specific resources or scopes.

● Issuing an access token: If the client is authorized, the authorization server will issue an access token to the client.
The access token is used to access the protected resources on the resource server.

Federated SSO
Federated Single Sign-On (SSO) is a type of single sign-on solution which allows users to use the same set of credentials (like a username and
password) to log in to multiple different systems, applications, or websites across different enterprises.

The key points about Federated SSO include:

● Identity Federation: The concept is based on trust relationships (federation) established between different domains or enterprises. In
a federated environment, each participating domain maintains its own identity store and agrees to trust the identity assertions from
the other participating domains.

● Standards-based: Federated SSO is typically implemented using open standards such as SAML (Security Assertion Markup Language),
OAuth, OpenID Connect, and WS-Federation. These standards define how identity information is exchanged between domains.

● Access Control: Once the user is authenticated on one of the systems within the federation, the user can gain access to all other
systems within the federation without needing to authenticate again. The level of access may vary based on the permissions assigned
to the user in each system.

● Benefits: Federated SSO improves user experience by reducing password fatigue, simplifies the management of identities, and can
enhance security by centralizing the identity management, enforcing strong authentication methods, and reducing the risk of phishing.

● Use Cases: It's often used in business-to-business (B2B) scenarios, where a company needs to provide access to its resources to users
from a partner company. For example, airline alliances often use federated SSO to allow customers to log in to the websites of
different airlines using the same credentials.

Federated SSO in Salesforce
Federated single sign-on (SSO) in Salesforce is a way for users to log in to Salesforce using their credentials from an identity provider
(IdP). This means that users do not have to create a separate Salesforce account or remember a separate set of credentials for
Salesforce.

Federated SSO in Salesforce is enabled by the Salesforce Identity Provider (IdP) API. This API allows you to configure Salesforce to
trust an IdP and to exchange authentication information with the IdP.

To configure federated SSO in Salesforce, you need to do the following:

1. Create an IdP account in Salesforce.
2. Configure the IdP to trust Salesforce.
3. Configure Salesforce to trust the IdP.
4. Configure your users to use federated SSO.

Once you have configured federated SSO in Salesforce, users will be able to log in to Salesforce using their credentials from the IdP.

User Provisioning and Deprovisioning in Salesforce
● User provisioning: User provisioning is the process of creating and managing user accounts in Salesforce. This includes creating new user accounts,

updating existing user accounts, and deleting user accounts.
● User deprovisioning: User deprovisioning is the process of removing user accounts from Salesforce. This includes deleting user accounts, disabling

user accounts, and suspending user accounts.

User provisioning and deprovisioning are important processes for managing user access to Salesforce. By properly provisioning and deprovisioning users, you
can ensure that only authorized users have access to Salesforce and that user accounts are not left active when they are no longer needed.

There are a few different ways to perform user provisioning and deprovisioning in Salesforce. You can use the Salesforce user interface, the Salesforce API, or
a third-party provisioning tool.

The Salesforce user interface is a good option if you only need to provision or deprovision a few users. However, if you need to provision or deprovision a large
number of users, you may want to use the Salesforce API or a third-party provisioning tool.

The Salesforce API is a more powerful option than the Salesforce user interface. It allows you to provision and deprovision users programmatically. This can be
helpful if you need to automate the provisioning or deprovisioning process.

A third-party provisioning tool is a good option if you need a more comprehensive solution for provisioning and deprovisioning users. These tools typically offer a
variety of features, such as the ability to provision and deprovision users from multiple systems, the ability to track user provisioning and deprovisioning
activities, and the ability to integrate with other systems.

Okta vs PingFederate
Okta and PingFederate are two of the leading identity and access management (IAM) solutions on the market. Both platforms
offer a wide range of features, including single sign-on (SSO), multi-factor authentication (MFA), and user provisioning and
deprovisioning.

Feature Okta PingFederate

Pricing Starts at $2 per user per month Starts at $3 per user per month

Features SSO, MFA, user provisioning
and deprovisioning, user
management, access
governance, API security

SSO, MFA, user provisioning and
deprovisioning, user management,
access governance, API security,
federation, adaptive risk analysis

Deployment Cloud-based Cloud-based or on-premises

Support 24/7 support 24/7 support

Ease of use Easy to use Easy to use

Scalability Scalable to meet the needs of
large organizations

Scalable to meet the needs of large
organizations

Security Secure platform with a strong
track record of security

Secure platform with a strong track
record of security

Okta is a cloud-based platform only, while PingFederate can be
deployed either on-premises or in the cloud. This means that
Okta is a more convenient option for organizations that do not
have the resources to manage an on-premises IAM solution.
However, PingFederate may be a better option for organizations
that need more control over their IAM infrastructure.

Okta also has a wider range of integrations than PingFederate.
This means that Okta is a better option for organizations that
need to integrate their IAM solution with a wide range of other
applications.

What are Identity Flows?
Identity Flows are a way of automating and streamlining the process of authenticating users and granting them access to applications and
resources. They are typically used in conjunction with identity and access management (IAM) solutions, such as Okta or PingFederate.

Identity Flows typically consist of a series of steps that are performed when a user attempts to access an application or resource. These steps
may include:

● Authentication: The user is prompted to provide their credentials, such as a username and password.
● Authorization: The user's credentials are checked against a database to verify that they are authorized to access the application or

resource.
● Provisioning: If the user is authorized, they are provisioned with the appropriate access rights.

Identity Flows can be used to automate a wide range of tasks, such as:

● Single sign-on: Users can log in to multiple applications and resources using a single set of credentials.
● Multi-factor authentication: Users can be prompted to provide additional factors of authentication, such as a security code or a fingerprint

scan, to increase the security of their accounts.
● User provisioning and deprovisioning: Users can be automatically provisioned with the appropriate access rights when they are hired or

terminated.

Identity Flow Types
1. Authorization Code Flow: This is the most common flow, especially for server-side applications. The application redirects the user to an authorization

server which the user logs into. The server then redirects the user back to the application with an authorization code. The application exchanges this code
for an access token.

2. Implicit Flow: This flow is used for applications that run in a browser using a scripting language such as JavaScript. In the Implicit flow, the token is returned
directly without an intermediate code exchange step. This flow is less secure and not recommended for new applications as of the OAuth 2.1 draft
specification.

3. Resource Owner Password Credentials Flow: This flow involves the application asking the user for their username and password and then using these to
request an access token from the authorization server. This flow is also not recommended unless the client is highly trusted.

4. Client Credentials Flow: This flow is used for server-to-server communication where a client application needs to access a resource server without user
interaction.

5. Device Code Flow: This flow is designed for clients executing on devices that do not have an easy text input method (e.g., game consoles, video streaming
devices). The device requests a code and verifies it using another device like a smartphone or computer.

6. Hybrid Flow: This flow is a combination of the Implicit and Authorization Code flows and returns tokens from both the authorization endpoint and the
token endpoint.

7. The OAuth 2.0 JWT Bearer Flow for Server-to-Server Integration is a security protocol where one server authenticates to another using a JSON Web Token
(JWT) as the client's credentials, typically used to enable secure server-to-server communication without transmitting sensitive information like passwords.

Each flow has different security considerations and is appropriate for different types of applications (e.g., web applications, single-page applications, mobile
applications, etc.). The selection of the flow will depend on factors like the application type, the trust level between the application and the authorization server, the
presence of a backend server in the application architecture, and the requirements around tokens and user information.

TLS vs. SSL
● TLS stands for Transport Layer Security, while SSL

stands for Secure Sockets Layer. They are both
cryptographic protocols that secure communications over
the internet.

● TLS 1.3 is the latest version of TLS, while SSL 3.0 is the
most recent version of SSL. TLS 1.3 is more secure than
SSL 3.0 and is considered to be the standard for secure
communications.

● TLS is used to protect a wide variety of applications,
including web browsing, email, and file transfers. SSL was
originally developed for web browsing, but it is now used
by a variety of other applications as well.

● TLS is more widely supported than SSL. Most modern
browsers and web servers support TLS, while support for
SSL is declining.

In general, TLS is considered to be a more secure and modern
protocol than SSL. If you are concerned about the security of
your communications, then you should use TLS instead of SSL.

Feature TLS SSL

Name
Transport Layer
Security Secure Sockets Layer

Latest version TLS 1.3 SSL 3.0
Security More secure than SSL Less secure than TLS

Applications
Web browsing, email,
file transfers, etc.

Web browsing, email,
etc.

Support Widely supported Support declining

