
Governance &
Elements.Cloud

Svet Voloshin

Governance = Discipline = Freedom

Objectives
● Understand various governance topics

Scope
Governance topics to include

● Project Methodology
● Risk Management
● Test Management
● Center of Excellence
● Continuous Integration
● Release Management
● Regulations

Why cover these topics?
● To maximize chances of project success

Key Points
● “If you fail to prepare, you are preparing to fail.”

-Anonymous

● I work as part of a team – you will learn how to work with
your Project Manager, rather than taking orders

● I work as an individual contributor – you will learn how to
guide the client through the project and keep your sanity.

Prevent project chaos. Control outcomes.

Agile vs. Waterfall

Waterfall Methodology
Waterfall
The waterfall methodology is a linear project management approach,
where stakeholder and customer requirements are gathered at the
beginning of the project, and then a sequential project plan is created to
accommodate those requirements. The waterfall model is so named
because each phase of the project cascades into the next, following
steadily down like a waterfall.

Advantages:

Regular reviews (milestones) to assess project success and necessary
adjustments.Easy to use and implement. Easy to manage, no special
training or artifacts needed.

Disadvantages

Problems or mistakes which are found later in the process can only be
fixed with major effort. High amount of risk and uncertainty since no
working software is produced until the end. Can`t handle complex
requirements well. Poor model for ongoing projects or improvements.

Best suited for:

Small projects with known requirements. Requirements are well
understood. Fixed scope and timeline. Well suited for initial project.
Known technology and requirements.

Regulatory requirements for certifications and so forth.

Risk of Waterfall:

Changing requirements -> Must rigorously be monitored with change
management process.

Project progress is hard to measure -> Milestones

Agile Methodology
Agile is an iterative approach to project management
and software development that helps teams deliver
value to their customers faster and with fewer
headaches.

Advantages:

Rapid, continuous delivery of useful delivery. People
over process. Working software over documentation.
Fast feedback cycles. Regular adoption to changing
customer demands.

Disadvantages:

Hard to estimate effort and timeframe. Bad for fixed
feature / scope combination. Lackluster
documentation. Self-organization of team and people
need some experience and time.

Best suited for:

Changes to existing system. Fast iteration and small
adoptions.

Risk of agile:

Complex integrations and processes cannot be built in
short sprints. ->

Small requirements or changes do not fit into overall
strategy -> CoE

https://trailhead.salesforce.com/content/learn/trails/learn-salesforce-agile-practices

Waterfall-Agile

W-Agile combines (freely) elements of Agile and Waterfall as needed.

Waterfall for the methods which need fixed planning and upfront definition and/or are known.

Like Backend integrations, Complex milestones and … Within these fixed elements use a Agile approach to experiment with more flexible elements.

Advantages

Can combine best from Agile and Waterfall.

Disadvantages

Needs know-how for both methodologies. Cannot be repeated.

Best suited for:

Transition from Waterfall to Agile.

Regulation or contractual requirements for specific pieces of work but flexibility with other pieces.

Risk of W-Agile:

Neither methodology is implemented properly and there is chaos and confusion leading to project failure.

Scrum or Kanban - how about Scrumban?

Scrum Kanban

Who prioritizes
it?

Product owner prioritizes on product
backlog

Product owner prioritizes on product backlog

Where does it
go?

The product backlog is reordered for the
next sprint.

The product backlog is continuously reordered
for the next available person with capacity.

When does the
work start?

During sprint planning, the team commits
to the work in the next sprint.

As soon as there is capacity to work on it.

Why is there a
delay?

Scrum focuses the team to deliver on their
sprint commitments, and interruptions
mid-sprint are discouraged.

Kanban focuses on efficient flow of work, so the
top of the backlog is always the next thing to be
worked on.

How long does it
take to deliver?

It can be 2 weeks or more, depending on
sprint status.

As soon as it is completed.

You Can Use Both: Scrumban
Many teams at Salesforce benefit from using parts of both Scrum and Kanban to manage their workload. Often, teams like the structure
of the regular planning and review cadence of Scrum, this allows them to manage progress easier. They also use the work-in-progress
limits of Kanban to respond to urgent work while minimizing disruptions that Kanban provides.

https://trailhead.salesforce.com/content/learn/modules/scrum-and-kanban-at-salesforce/choose-the-best-workflow

Project Manager - Important Ally

Key Responsibilities

● Business requirements success
● Project completed on time
● Project completed within budget
● Project goes smoothly/minimize friction
● Manage people/resources
● Foresee and mitigate risks
● Manage expectations
● Be the diplomat/adult in the room

Can a PM do it all alone?

NO!
● PM is rarely as technical as a

Developer/Engineer/Architect
● PM relies on the tech/dev team to get accurate

feedback
● If a PM cannot get straight answers, PM starts to lose

control and everyone starts sharing the stress
● Common PM Questions

○ Where are we with regard to deliverable “X”?
○ What are our blockers?
○ Have you documented the changes?
○ Who is covering for you when you’re out?
○ Do you foresee any risks?

https://trailhead.salesforce.com/content/learn/modules/project-management-essentials

Good vs. Bad PM

Good PM

● Does not commit the team unilaterally
● Carefully manages scope creep
● Embodies team spirit
● Welcomes challenges
● Assumes responsibilities
● Calms the team and the client
● Inspires the team
● Encourages the team
● Leads by example
● Does not blame
● Does not throw teammates “under the bus” in meetings
● Minimizes number of meetings
● Keeps stand-ups short and sweet
● Removes friction

Bad PM

● Commits the team unilaterally
● Does not manage scope creep
● Dictatorial
● Afraid of challenges
● Offloads responsibilities onto others
● Stresses out the team
● Depresses the team
● Sets a poor examples
● Blames others for own and client’s shortcomings
● Frequently throws people “under the bus” publicly
● Creates unnecessary meetings
● Extends stand-ups
● Increases project friction

Working with PMs
Good PM Alliance

● Realize that being a good PM is hard, being a great PM is
magical!

● Share responsibilities
● Align early
● Make your PM trust you by keeping them in the loop
● Communicate risks and doubts to your PM
● Think of mitigation strategies and communicate them to

your PM
● Help the PM manage deadlines
● Identify scope creep early and often
● Take pride and responsibility for your work
● Be a friend
● Realize that your project may often not be the only

project your PM is handling
● Be ready to handle project issues when your PM can’t be

there

Managing your PM
Why is the PM such a nightmare?

● Realize that not all PMs are good at what they do
● Not all PMs are true PMs
● Most likely a PM started out with the best intentions, but then they

evolved into a nightmare because they became jaded and afraid

Nightmare PM Management Strategies

● Use the same strategies as you would with a good PM
● Get the PM on your side quickly
● Remember that it’s not your job to be the PM
● Set boundaries - unless something is your fault, your time outside of

work is your own
● Stand up for yourself and for your team when appropriate
● Do your job well
● Document everything
● Trust, but verify
● Power move: go over the PM’s head to their manager
● Nuclear option: leave the project

Project Management Tools
Why use Project Management tools?

○ They keep everyone aligned and accountable
○ They help maximize the chances of success

● Rule #1: any project management tool is better than no tool
● Rule #2: spreadsheets are a horrible idea
● Rule #3: Google Sheets are less horrible, but still sub-optimal
● Rule #4: Transparency is key

Strategies
● Learn best-in-breed tools as early in your career as possible
● Invest time in Jira and Confluence - Gold Standard
● Invest time in Smartsheet
● Look at other options, like Rally
● Try using spreadsheets and Google Sheets and identify pitfalls

Questions to ask
○ How do you keep them synchronized?
○ How do you ensure version control?
○ How do you track who did what?
○ How do you share project updates with the client?

● How do you report on progress, risks challenges?
● How will your tool help keep you on track?
● How will your tool help keep you out of trouble?

Risk Mitigation Strategies - Dependencies
Dependencies
Problem:

Project success can be at risk since we are dependent on progress of something else
outside of our control. Example: Mobile App Development (especially native apps),
Software Migration.

Mitigation:

Implement strong Project Management Office. Identify dependencies. Plot
dependencies on a Gantt Chart. Constantly monitor and if necessary, adjust dependent
parts of the projects. Build supporting parts early.

What is a Gantt Chart?

A Gantt chart, commonly used in project
management, is one of the most popular and
useful ways of showing activities (tasks or events)
displayed against time. On the left of the chart is
a list of the activities and along the top is a
suitable time scale. Each activity is represented
by a bar; the position and length of the bar reflects
the start date, duration and end date of the
activity.

https://www.gantt.com/
https://www.gantt.com/

Risk Mitigation Strategies - Distributed Teams
Problem: You have geographically distributed teams which worked historically
with great autonomy.

Mitigation

Distributed Tasks: Have separated scrum teams which keep each other on the same
page through a Scrum of Scrum. The Scrum of Scrums one or more people from
each Scrum Team update on each teams status.

Share knowledge: Have regular, team led, knowledge sharing. Encourage
horizontal exchange of knowledge between teams using tools like Slack, Fail
Fridays, Demo Jam and so forth. Implement a knowledge sharing platform like
Confluence.

Produce coherent, standardized work: Quality control define standards for each of
the work parts: Requirements, Architecture, Coding and Configuration. The Center
of Excellence supports Quality control by implementing processes to encourage
and enforce these standards.

Problem: Different Stakeholders of different needs and requirements.

Mitigation:

Steering committee: Align requests and requirements to the Company strategy

Project Management Office (PMO): Strategic project management, allocate resources

Center of Excellence: Different Business Units communicate with each other.

What are responsibilities of a CoE and what are the functions/roles?
Executive Committee:

C-Level & VP-Level (Quarterly)
Manage strategic priorities, Goals and Funding

Steering Committee
Sponsors of Business & IT (Below Executive)
Tactical roadmap, review and prioritize requests

Defining the standards and best practices (Technical & Delivery)

 CoE Lead: Coordinates internal & external resources

 Members: Admins, Business Analysts, Solution Architects, Technical Architect,
Developers, QA Leads, Release Managers

Architectural Review Board: creates guidelines and standards for architecture

QA Team: Helps and supports the Quality

Risk Mitigation Strategies - Company Conflicts

Executive Sponsor: Carry responsibility, approve project scope changes, approve project
deliveries, approve funds.

Project Sponsor (Senior Mgmt): Key Business decisions, approve project budget,
resources, communicate goals to company

Project Manager: Project plan, manage deliverabilities, recruit staff, lead and manage
project team, manage project, identify risks, update management

Solutions Architect: Like a main building architect and designer. Come up with an
end-to-end solution and own it. Identify technical risks and communicate to the team
and especially to the PM. Be client-facing.

Technical Architect: Structural engineer - understand the full extent of the solution,
integration components and how they fit into the Salesforce architecture. Give the
Solution Architect a reality check Develop strategies to solve complex technical
challenges. Lead the technical delivery of Salesforce implementations. Be client-facing.

Business Analyst: Assist defining project, gather requirements, document business
requirements, verify project delivery.

Project Team Member: Do the best work possible.

Important Project Roles and Responsibilities

Global Sample Model

Localized Sample Model

CoE

Testing
Key Points

● Test early and often
● Resolve code conflicts ASAP
● If tests fail don’t ignore them - this will come

back to haunt you later
● Not all tests have to be complicated
● Guide the client through testing
● Tests minimize “surprises”
● Tests build confidence

What are different source control branching strategies?

GitHub Flow:
● One master branch which is deployed as fast as possible

GitFlow
More complex flow:

● Developers develop in “local” feature branches.
● Development branch is the main branch.
● Release branch is fed by the develop branch. Integration and regression

testing is done on the release branch.
● Master branch: As soon as Release branch is stable it’s fed into master

branch where it’s deployed to Production.
● Hotfix branch is created directly from master branch and fed back into

master and dev branch.

DevOps
DevOps is a set of practices that combines software development (Dev) and IT operations (Ops). It aims to shorten the systems
development life cycle and provide continuous delivery with high software quality.[1] DevOps is complementary to agile software
development; several DevOps aspects came from the agile way of working. (Wikipedia)

https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/IT_operations
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/DevOps#cite_note-loukides-2012-1
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/DevOps

What benefits does Continuous Integration (CI) provide?

● Constantly validate deployments and unit tests run on Production prior to deployment day
● Accelerate speed of actual deployment but pre-validating and ensuring deployment success
● Handles merge conflicts with multiple developers / teams
● Requires Source Control: Significantly increased governance (to review changes per

engineer/dev/admin; pull reviews to Reject/Accept work

Describe a CI driven deployment process

1. Dev/Admin pulls metadata from sandbox
2. Dev/Admin commits work to source control (check in of changes)
3. Validate deployments are run against a sandbox that mimics production (or Production itself) to

ensure new work continues to deploy
4. Dev/Admin raises pull request after successful CI
5. Merge/Approval of Pull Request triggers CD process (deployment to higher environments)"

What are the benefits of Source Control Management

● Allow you to move the source of truth from Salesforce into a centralised repository
● Able to deploy your application to other Salesforce Orgs (that aren't necessarily connected)
● Track changes
● Enable easier rollback
● Allow versioning of changes
● Manage conflicts of having multiple developers working on shared components
● Manage code reviews

DevOps - Continuous Integration & Source Control

DevOps - Continuous Delivery
What is Continuous Delivery?

● CD is a method that allows you to deliver changes to production in a quick, safe
and sustainable way.

What is the difference between Continuous Integration and Continuous Delivery?
(Atlassian)

● Continuous delivery is an extension of continuous integration since it automatically
deploys all code changes to a testing and/or production environment after the build
stage.

● On top of automated testing, you have an automated release process and you can
deploy your application any time by clicking a button.

● In theory, with continuous delivery, you can decide to release daily, weekly,
fortnightly, or whatever suits your business requirements. However, if you truly
want to get the benefits of continuous delivery, you should deploy to production as
early as possible to make sure that you release small batches that are easy to
troubleshoot in case of a problem.

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment#:~:text=CI%20stands%20for%20continuous%20integration,continuous%20delivery%20or%20continuous%20deployment

Big vs. Small Batches

Rule of Thumb: small batch releases are faster and more effective.

Why?: you are likely to uncover problems/conflicts earlier in the process.

Why use them?

● To not go crazy and hate life (e.g. enjoy your evenings &
weekends)

● To automate the deployment pipeline as much as possible
● To ship code faster
● Infinite other good reasons: fill in the _________ (discussion topic)

Enterprise-level Tools

● Copado
● Gearset
● Prodly
● Flosum

Static Code Analysis
● Clayton
● Codescan
● PMD

DevSecOps
● Checkmarx

Quick to get started

● Copado Essentials

Questionable, why?
Need to build deployment logic and figure out
how to resolve conflicts.

● Jenkins
● GitHub Actions
● CircleCI
● Salesforce DevOps Center

The Worst
● ChangeSets - flat “no”

DevOps Tools

What other tools do you use/like and why?
(discussion topic)

http://www.copado.com
https://gearset.com/
https://prodly.co/
https://www.flosum.com/
https://www.getclayton.com/
https://www.codescan.io/
https://pmd.github.io/
https://checkmarx.com/
https://essentials.copado.com/app/SignInCmpnt.html
https://www.jenkins.io/
https://github.com/features/actions
https://circleci.com/
https://www.salesforceben.com/salesforce-devops-center/

Salesforce Testing Tools
● Provar
● Copado Robotic Testing
● QASource
● AccelQ
● Keysight Eggplant
● Opkey
● Salesforce itself
● People
● …many more

Key Points:

● Test tools are better than no test tools
● No tool will replace people completely
● Human-powered User Acceptance Testing is always

going to be important

https://www.provartesting.com/
https://www.copado.com/robotic-testing
https://www.qasource.com/
https://www.accelq.com/
https://www.eggplantsoftware.com/products/test-automation-intelligence
https://www.opkey.com/salesforce

Elements.cloud
What is it? - Cloud Intelligence Platform (huh?)

● Org Discovery
● Impact Analysis
● Multi-cloud metadata dictionaries with automated documentation,

dependency trees, where-used & %filled.
● Requirements & feedback
● Process maps
● Architect diagrams
● User stories & Releases.
● DevOps & Jira integration
● In-app help & adoption monitoring

What it is not

● Deployment tool
● Silver bullet - one-stop-shop solution
● Write all of your documentation for you

Pricing

Competition

● Strongpoint
● Salto
● Sonar
● Metazoa

https://elements.cloud/
https://elements.cloud/consulting/
https://appexchange.salesforce.com/listingDetail?listingId=a0N3A00000EOMxCUAX&channel=recommended&tab=e
https://www.salto.io/blog-posts/best-practices-for-salesforce-impact-analysis
https://sonarsoftware.com/products/impact-analysis/
https://www.metazoa.com/snapshot-use-cases-change-impact-analysis/
https://elements.cloud/

Thank you!
Stay tuned in the Slack channel for
the next topic and please feel free to
suggest areas of interest.

Ways to get in touch…

Connect with me on LinkedIn
Email: svet@dc3me.com

Obvious People Slack Channel:
#salesforce-academy

https://www.linkedin.com/in/svetvoloshin/
mailto:svet@dc3me.com

